
Poster: Exploiting Timing Side-Channel Leaks in Web Applications that Tell on
Themselves

Vik Vanderlinden, Tom Van Goethem, Wouter Joosen and Mathy Vanhoef
imec-DistriNet, KU Leuven

{firstname.lastname}@kuleuven.be

Abstract—The performance of remote timing attacks is
highly dependent on the network connection that the attack
is executed over, where jitter in both the up- and downstream
direction can significantly deteriorate an attack’s perfor-
mance. Traditional timing attacks overcome this problem
by obtaining a large number of measurements.

In this poster, we present a technique to remove the
inaccuracies caused by downstream jitter in a remote timing
attack, which we expect to reduce the number of measure-
ments required to perform a successful timing attack. Our
core idea is to exploit timestamps in HTTP responses, whose
values are independent of the downstream jitter. To abuse
these timestamps, the adversary synchronizes with the target
web server’s clock edge, after which the observed timestamps
allow the adversary to infer secret information.

We present a method to synchronize with the server’s
clock and discuss how to compensate for the clock drift
between the attacker and target machines. To evaluate the
feasibility of our technique, we also investigate the occur-
rence of timestamps in HTTP responses for the top 10,000
sites according to the Tranco list.

Index Terms—Side-channel attacks, timing attacks, web-
based attacks, network security

1. Introduction

The first remote timing attack was performed in 2005
by Brumley and Boneh, who used more than 1.4 million
samples to leak a 1024-bit RSA key from a server [1].
Historically, to exploit a remote timing attack an adversary
has to obtain many samples to be able to differentiate
requests in a statistically significant way. Collecting a
high number of samples makes the attack more robust
against the jitter imposed by the network. By performing
a test like the box test proposed by Crosby, Wallach and
Riedi, an attacker can confidently differentiate between
operations on a server using a quantifiable metric and leak
private data [3].

In order to reduce the need for obtaining such a high
amount of samples, the network jitter that is present has
to be reduced or removed. By eliminating the dependence
on one or both network paths, the jitter can be elimi-
nated from the obtained samples. Previous work showed
that both up- and downstream jitter can be removed by
coalescing multiple requests into a single TCP segment
and looking at the order in which the responses are
being returned [5]. However, their technique only works

over HTTP/2 and requires that the server uses concurrent
processing. We propose a new sequential timing attack
that eliminates downstream jitter and can leak sensitive
information under less strict prerequisites.

First, the core concept of the attack and the prereq-
uisites will be presented. Second, some necessary opti-
mizations to make the attack feasible will be discussed.
Specifically, the clocks of the attacker and target machines
have to be synchronized in order to leak information
from the target. Adding to the complexity, these clocks
will experience a relative drift between them over time,
due to the minor inaccuracies in the physical hardware-
clocks they use. Because the attack takes a non-negligible
amount of time, the relative drift between machines should
be compensated for in order to keep the synchronization
valid throughout the attack. Finally, the occurrence of
timing information on the web is discussed due to its vital
importance to a successful attack.

2. Proposed Attack

Consider two requests, one of which includes a secret
operation that takes additional processing time (the ‘tar-
get’ request), the other does not (the ‘baseline’ request).
When these two requests are sent to a server at exactly
the same moment, the expected outcome would be that the
response to the target request is returned after the response
to the baseline request because additional processing time
has passed. Sending both requests can be timed such that
the baseline response is returned before some state change
on the server and the target response after the state change.
The state change is reflected in the respective responses
to both the baseline and target requests. The fact that
some state is different in both responses can be used by a
malicious actor to leak information. One example of state
that constantly changes (increments) and is thus a logical
choice for an attack is the current time. If a server reflects
information about the current time in its responses, this
values continuously changes, by definition, over time and
can thus be used to leak private information.

The proposed attack eliminates the downstream jit-
ter by exploiting timing information included in HTTP
responses from the target server. Because the response
is constructed on the server, the timing information that
originated on the server travels over the downstream path
unchanged while the jitter imposed on this path has no ef-
fect on the contents (among which the timing information)
of the HTTP response.



3. Clock Synchronization

The amount of responses that are returned close to
a target server’s clock edge should be maximized to get
the largest potential for differentiating between requests.
Bringing the moment the response is sent from the target
server close to the target clock edge is exactly the goal of
the clock synchronization.

An overview of the clock synchronization process is
depicted in fig. 1. The middle bar represents the target
server, with clock ticks (where the time on the server rolls
over to the subsequent value) indicated by vertical bars.
Before the clock synchronization is performed, the client
has no knowledge about the timing of the server clock
ticks (or edges). As shown at the top of fig. 1, the client
may send requests but will not necessarily be close to the
clock edges of the target server (it is essentially similar to
a random initialization). After synchronization, the goal
is to have 50% of the responses be returned before the
clock edges and 50% after the clock edges. Practically,
the client has to find an offset to delay after its local
clock tick that moves the sending of the responses on the
server-side just the correct amount of time such that they
are being returned around the moment of the clock edge,
which is shown at the bottom of the fig. 1.

Figure 1. An overview of the effect of clock synchronization. The middle
bar represents the target server with clock ticks indicated by vertical bars.
The top bar is an unsynchronized client that sends requests to the target
server. On the bottom is the same client after the synchronization, now
sending requests at an offset in time such that the responses are returned
at the exact moments of the target clock ticks. The synchronization
process consists of finding the correct offset for the client in such a way
that 50% of the responses are returned before and 50% are returned after
the target’s clock edges.

The synchronization process only uses one request (the
‘baseline’) that is repeated to perform the synchronization.
The attacker machine starts by sending requests over
equidistant offsets within an interval (usually one second
to start). By observing the responses of the target server,
the clock edge may be discovered.

When a response is generated before the clock edge
on the target server, consider the time to be tS . After
the clock edge, the time is then incremented to tS + 1.
The attacker machine can detect this change and can infer
between which offsets the target clock edge occurred. In
practice, the detection is less straightforward because the
time on the target server is incremented every second
and not all requests necessary for the synchronization can
be sent within one second. This means that an attacker
cannot simply compare the returned timing values directly.
Rather, the attacker can use the relative difference between
the times on the attacker and target machines, because the

time is also incremented on the attacker machine at a more
or less similar rate.

When the interval at which the target clock edges
occur is found, the attacker can choose to iteratively
repeat the process of synchronization within this interval
with smaller offsets. This whole process is of course
still hindered by the jitter acting upon each request sent
over the network. Our preliminary tests show that the
synchronization can be performed down to an accuracy of
a millisecond with a very low number of required samples.
To increase the accuracy of the synchronization further,
more optimizations are required, as discussed in the next
section.

4. Clock Drift Compensation

Because clocks are inherently inaccurate, be it to a
rather small degree that is not disturbing to a human, the
clocks of the attacker and target machines may drift away
from each other. Relative clock drift has a deteriorating ef-
fect on the performed clock synchronization. First because
any synchronization that has been successfully performed
will only be valid for a small amount of time, until the
relative drift will have moved the actual synchronization
point away from the detected result. Second, a synchro-
nization of higher resolution may take too such a long time
to execute that the actual synchronization point may have
already drifted out of focus of the synchronization algo-
rithm (which is iteratively narrowing down on one point)
before the synchronization has been completed. Clearly
these effects make the attack impossible to perform as is,
because an accurate clock synchronization is vital to the
success of the attack.

In order to make the attack feasible, the relative drift
between the attacker and target machines should be com-
pensated. The absolute drift of a machine’s clock can
depend on many factors, including but not limited to
temperature fluctuations, CPU usage spikes etc. [2]. By
using machines in a shared public cloud environment,
most factors that may affect the drift are not in control of
an adversary. On the other hand, these environments allow
an adversary to execute an attack from devices that are
physically near the target machines. This means shorter
network paths and thus more accurate attacks, thereby
incentivizing the use of a public cloud environment.

The relative drift is not stable over time, because it is
the sum of two absolute drifts (of the attacker and target
machines) which themselves are not stable over time due
to the external factors. The relative drift between a ma-
chine in our university network in Belgium and a Amazon
AWS server in Frankfurt, Germany was monitored for
multiple months in 2021. The result depicted in fig. 2
shows that the drift may be approximated as a linear drift
most of the time. Note in particular that the time-scale
of this figure is large and thus the drift seems extremely
large but is actually relatively stable over most periods
of a few days. This linear nature gives an adversary the
time to approximate the drift close enough to accurately
compensate it during the remainder of the attack by taking
multiple samples of the target machine clock edge over
a few hours and performing a linear interpolation. Most
instances at which the drift seems to suddenly change in
fig. 2 are reboots of the machine in our university network.



Figure 2. The relative drift between a machine in our university network
in Belgium and an instance in the Amazon AWS public cloud environ-
ment in Frankfurt, Germany. Sudden changes in drift are mostly reboots
of a machine involved in the experiment.

To execute an attack with drift compensation, the drift
has to be estimated first, after which all timing values are
incremented with the estimated relative drift since the start
of the attack (including clock synchronization). Using the
drift compensation, we managed to increase the accuracy
of the synchronization down to around 10 microseconds.
However, it should be noted that this effort significantly
increases both the attack time and required number of
requests (due to drift compensation and more involved
synchronization). An extensive comparison between this
method and a standard timing attack regarding the number
of requests has yet to be made.

5. Timing Values on the Web

The proposed attack requires the use of timing infor-
mation embedded in the server’s response. This informa-
tion can either be present in one or more headers or in the
body (e.g. embedded within a HTML page) of the HTTP
response.

Timing information can occur in different formats.
First, there are absolute timing values that represent a spe-
cific point in the history or future, usually represented with
a year and date. Second, there are relative timing values
that represent an offset relative to some absolute time,
such as Unix timestamps (the number of seconds since 1
January 1970 UTC). Finally, there are intervals, that define
an amount of time and yet are not inherently bound to any
absolute time (i.e. an interval such as “5 seconds,” is not
bound to a specific moment in time).

To detect these different types of timing values, a
number of regular expressions have been constructed that
match a large number of common formats of timing
values. The detection in HTTP headers is a simple string-
based match against the each header’s value because a
HTTP header is essentially a single string. Detection in
structured data such as HTML is more difficult. To find
timing values in HTML, a bottom-up traversal of the
HTML DOM-tree is performed for each visited page.

To evaluate how commonly timing values occur on the
web, the Tranco list1 [4] generated on 22 February 2021

1. Available at https://tranco-list.eu/list/85NV.

top 10,000 sites were visited by a custom crawler. In total,
the crawler successfully visited 41,836 web pages, 5 per
site minus some crawler errors. Each page was visited
twice with a delay of 10 s between visits. By visiting
twice, an easier distinction between variable timing values
and static content on a page can be made. It is entirely
possible for timing values to occur statically on a site, e.g.
the date a blog post was published.

All data gathered was post-processed before any anal-
yses were performed. The post-processing is an important
step to filter out static timing values, false positives from
the regular expressions and timing values that do not
occur consistently on a web page. Because all pages have
been visited twice, the post-processor attempts to create
a mapping between all found values in both visits and
removes those values that are identical on both visits
(probably static or false positive results) and that only
occur in one out of two visits (no consistent occurrence).

An interesting statistic is that a timing value occurs
in the date (or Date) header in 92.36% of the response
documents (of all responses, the document responses with
status code 200 are the only ones used for the analyses).
Some web pages return a timing value in their date header
that is unchanged for more than 10 s (the resolution of
the timing information is very low). These values are
discarded by the post-processing step, being flagged as
static values. Even if these values are not entirely static,
the granularity of the timing values is too low to use in
the attack, thus them being discarded is not an issue.

In total, 5.65% of the documents did not include a
single timing value and 37.56% of the responses only
have one timing value embedded on them. For most of
the responses having one value, this value will be in the
date header. The median number of timing values per
response is 2. The average, however, is 6.39 indicating that
there are a number of large outliers. With 990 response
including more than 20 timing values and 62 of those
even including more than 500 it is clear that these outliers
increase the average. Finally, the analyses show that only
22.77% of timing values were found in headers, showing
that it is worth including the HTTP response bodies in
further analyses.

References

[1] D. Brumley and D. Boneh, “Remote timing attacks
are practical,” in Computer Networks, 48(5), 2005,
https://doi.org/10.1016/j.comnet.2005.01.010, pp.701—716.

[2] S. J. Murdoch, “Hot or not: Revealing hidden
services by their clock skew,” in CCS, 2006,
https://doi.org/10.1145/1180405.1180410, pp.27—36.

[3] S. A. Crosby, D. S. Wallach and R. H. Riedi, “Opportuni-
ties and Limits of Remote Timing Attacks,” in ACM Trans-
actions on Information and System Security, 12(3), 2009,
https://doi.org/10.1145/1455526.1455530, pp.1—29.

[4] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Ko-
rczyński and W. Joosen, “Tranco: A Research-Oriented Top
Sites Ranking Hardened Against Manipulation,” in NDSS, 2019,
https://doi.org/10.14722/ndss.2019.23386

[5] T. Van Goethem, C. Pöpper, W. Joosen and M. Vanhoef, “Time-
less timing attacks: Exploiting concurrency to leak secrets over
remote connections,” in Proceedings of the 29th USENIX Security
Symposium, 2020, pp.1985-–2002.

https://tranco-list.eu/list/85NV


tC

t C

Target

Exploiting Timing Side-Channel Leaks in Web 

Applications that Tell on Themselves

Vik Vanderlinden1, Tom Van Goethem1, Wouter Joosen1 and Mathy Vanhoef1

1imec-DistriNet, KU Leuven

Tranco Top 10k domains
• +-5 pages per domain

Crawl: Visit each page twice with delay

Remove all except first-party 
documents

Extraction
• Regular expressions
• Full string match on headers
• DOM-tree traversal in HTML

Wait 10s#1

Timing Values on the WebExploiting Timing Values

RTT Attack Presented Attack

Server-side

Internet

Client-side

= network jitter

RqRq
41,836 web pages

24,928 documents

22,77% in headers

77,23% in bodies

Up to 5µs/s
observed

Clock Synchronization

Clock Drift Compensation

Post-processing

Remove crawl errors (10,130)

Attempt to match values from #1 and #2

Remove unmatched and unchanged
values

20 500

1,569,272 timing values

on 990 docs

2/page

median

on 62 docs

6,39/page

on average

5,65% of docs

0

92,36% of 
date headers

#2

Attacking

Estimate 
Drift

Sync 
Baseline

Probe 
Baseline (x2)

Probe 
Target

Relative drift

Track, 
Estimate, 
Approximate

Increase in Sync accuracy: down to 10 μs

Sync accuracy: down to 1 ms

tS

Client

In-sync
Client

O
ff

se
t

Search offset so 50% before and after

Clock ticks


	Introduction
	Proposed Attack
	Clock Synchronization
	Clock Drift Compensation
	Timing Values on the Web
	References

