
Poster: Testability-driven security and privacy testing for Web Applications

Luca Compagna
SAP Security Research

Giancarlo Pellegrino
CISPA Helmholtz Center for Information Security

Davide Balzarotti
Eurecom

Martin Johns
Technical University Braunschweig

Angel Cuevas
Universidad Carlos III de Madrid

Battista Biggio
Pluribus One

Leyla Bilge
Norton Lifelock

Fabian Yamaguchi
ShiftLeft Inc

Matteo Meucci
IMQ Minded Security

Abstract—Modern web applications play a pivotal role in our
digital society. Motivated by the many security vulnerabilities
and data breaches routinely reported on those applications,
we initiated the EU TESTABLE research project to address
the main challenges of building and maintaining web applica-
tions secure and privacy-friendly. The ultimate goal is to lay
the foundations for a new integration of security and privacy
into the software development lifecycle (SDLC), by proposing
the novel idea of combining two metrics to quantify the
security and privacy risks of a program, i.e., the testability of
the codebase (via the novel concept of ”testability patterns”)
and the indicators for vulnerable behaviors.

We have already achieved promising results by applying
our research proposal in the area of static analysis security
testing (SAST) [2]. Hundreds of tarpits—code instructions
challenging for SAST tools—have been identified and cap-
tured in testability patterns that we used to measure SAST
tools effectiveness as well as to improve the ”SAST testabil-
ity” of open source applications via code refactoring routines
removing the tarpits. More than 180 new vulnerabilities have
been uncovered after refactoring and confirmed by open
source applications’ owners. We believe similar promising
results can also be achieved in other areas such as dynamic
analysis, privacy, and machine learning.

Index Terms—web, testability, risk, measurement, metrics,
security, privacy, ML

1. Introduction

Web applications are ubiquitous, and they are used
in a multitude of different domains. According to the
2020 Edgescan Security Report, “Web application security
is where the majority of risk still resides” [1]. This is
confirmed by the fact that most of the recent data breaches
took advantage of the poor security of web applications.

Software security testing plays a fundamental role to
mitigate this problem. In particular, developers regularly
use static code analysis and automated testing tools to
verify their application and identify vulnerabilities. But
existing solutions are often limited in their ability to
automatically discover security problems. When problems
are not detected is always challenging to know for sure
what the testing tools left uncovered.

While threat modeling and risk assessment method-
ologies are often adopted by industry at early phases of
the software development lifecycle, they are too far from
the implementation details and therefore they can only
set high-level recommendations for later phases, such as
testing. Computing risk measures that are closer to the
application code itself can be used to complement early
risk assessment phases, and could help to prioritize the
testing effort. However, this area has so far mainly focused
on determining the likelihood that an application contains
a vulnerability (what we call vulnerability indicators).
Therefore, even when these indicators exist, they provide
little guidance to the developers on how the corresponding
risk could be mitigated. For instance, knowing that a web
application has a high risk of containing vulnerabilities
(even when none have been detected during development
and testing) is a piece of information that can be difficult
to translate into actionable insights.

The poor state of web security is further exacerbated
by two rapidly emerging aspects. First, more and more
web applications integrate machine learning (ML)
components at the code or at the service level to im-
plement business functions or to protect web applications
from abuse1. Unfortunately, existing techniques to detect
vulnerabilities in web application lack the sophistication
to interact with and interpret the behavior of ML compo-
nents, thus impeding the analysis and testing of a larger
and larger number of ML-based web applications. Second,
web applications are facing more and more a social and
political pressure to be designed, implemented, and de-
ployed in a way that preserves the users privacy. This re-
quirement is especially relevant in Europe after the adop-
tion of the General Data Protection Regulation (GDPR)
that aims, among other things, to establish a framework
to guide organizations to manage citizens’—and by ex-
tension web applications users’—personal data. GDPR re-
quires developers to extend existing risk-based and secure
development methodologies with privacy-preserving solu-
tions when designing and implementing the application
software. It also introduces specific challenges to existing
testing methodologies, as the privacy of an application

1. E.g., Google Cloud’s Vision API https://cloud.google.com/vision or
Microsoft Cognitive Services https://azure.microsoft.com/en-us/services/
cognitive-services/

https://cloud.google.com/vision
https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/

depends on the composition of a large number of third-
party services and libraries, which are often not under
developers’ control. Moreover, while it is reasonable to
believe that developers have a clear incentive in fixing
security vulnerabilities, it might be counterproductive for
them to collect less user data. These two aspects combined
result in the fact that privacy testing cannot be performed
solely on the developers’ side, but it also requires constant
monitoring from the end-user perspective. To summarize,
we can classify existing shortcomings around three main
challenges:
(C1). Security testing of web-based applications is a task
of ever growing complexity, which cannot sufficiently be
addressed with the current set of technologies. The rapid
inclusion of ML classifiers as part of (or as backend
of) web applications further reduces the effectiveness of
traditional white and black-box testing solutions.
(C2). Existing approaches do not provide a clear feedback
to the developers on how to interpret the (lack of) results.
In particular for areas of the application that are hard to
test or even out of reach for the utilized testing tool, no
information is given on the encountered problems or about
potential remedies to provide more robust testing.
(C3). Existing static and dynamic frameworks to test web
applications focus on the identification of well-known
security vulnerabilities. Privacy issues are regularly over-
looked and often left to a third party analyst to discover
through tedious manual processes.
While there is a lot of research investigating over (C1),
we believe that (C3) and (C2) tend to be overlooked and
more research should focus on that. In our EU funded
project TESTABLE [3] we are researching over all those
challenges. Our idea is to re-design the way we test web
applications around a new testability metric.

By applying this idea in the context of SAST we
obtained very promising results [2]. In there, hundreds of
tarpits—code instructions challenging for SAST tools—
have been identified and captured in testability patterns
that enabled us to measure SAST tools effectiveness, to
make developers aware of the tarpits in their code (via
automated discovery rules for the tarpits), and to improve
the ”SAST testability” of open source web applications
(via code refactoring routines removing the tarpits). Hun-
dreds of new vulnerabilities have been uncovered after
refactoring and confirmed by applications’ owners.

An introduction to our approach, instantiated for the
SAST domain, is discussed in Section 2. However, the
approach is more general and future directions, shortly
presented in Section 3, include its application to dynamic
application security testing (DAST) and beyond security
so to consider also the privacy and (adversarial) machine
learning dimensions.

2. Approach and results for SAST

Fig. 1 depicts our approach. The core idea is to
introduce the (un-)testability dimension in the risk score.
Existing methodologies for measuring risk focus on the
probability V that a certain web application would contain
a vulnerability. These mono-dimensional methodologies
are based on vulnerability indicators such as the size and
complexity of the code, the type of information handled by

Testing tools

Patterns

Code
analysis

Testing toolsTesting tools

Coverage
measurement

Web Application

Code Analysis and Remediation

Security, Privacy and ML Testing

Indicators

U
nt

es
ta

bi
lit

y

RISK THRESHOLD
High risk

Hard to be
tested

Low risk
Easy to be
tested

Figure 1: Our approach

the application, the number of commits over time, or the
total number of developers—all elements that are difficult
to modify in a running project. We propose instead a
new orthogonal dimension measuring the testability of
the application into the current notion of risk (cf. two-
dimensional graph in the right-hand side of Fig. 1).

As a simple example, we can imagine two applica-
tions, A1 with a vulnerability indicator V=40% and A2
with V=63%. While lowering these values can improve
the security and privacy of the applications, it can be
very difficult to do that in practice. For instance, reducing
code size or changing the number of developers are dif-
ficult aspects to act on. Moreover, it is possible that A1
(V=63%) avoids certain coding and practices (we refer to
them as testability patterns in our work), thus making
the application easier to analyze by testing tools. As a
result, even if the likelihood of containing a vulnerability
is higher for A1, the developers can expect that most of
these problems will be detected during the testing phase—
thus resulting in a final product that is more secure than
the one corresponding to A2 (V=40%).

For space limitation, we illustrate in the next sub-
sections the three main activities of our approach when
applied to SAST, providing a summary of the results
published in [2]. However the approach is more general
and can be applied beyond SAST (see Section 3).

2.1. Testability patterns creation

Core to our research idea is the identification of the
crucial testability patterns for specific testing approaches
of web applications.

In the context of SAST, we created hundreds of testa-
bility patterns for both PHP and JavaScript (JS), two of
the most popular web programming languages. A SAST
testability pattern captures a few code instructions in
language X that, when present, may impede the ability of
state-of-the-art tools to analyze an application developed
in X. Those few code instructions are referred to as the
”tarpit”. For instance, let us consider the following pattern
instance for PHP:

1 function F($var) {
2 return $var;

3 }
4 $a = $_GET["p1"]; // source
5 $b = call_user_func("F", $a); // tarpit
6 echo $b; // sink

First, note that all instances include, in purpose, a
simple cross-site scripting (XSS) vulnerability to set an
expected result when measuring SAST tools: in line 4 the
attacker controls the input parameter "p1" (the source)
that is printed, without any sanitization, into the HTML
web page in line 6 (the sink). Second, in between this
source-sink data-flow there is the tarpit. The tarpit is the
code area that may confuse the SAST tools. The tarpit in
line 5 is a form of dynamic dispatching (reflection) that
allows the programmer to invoke a function specified by
passing its name inside a string.

This specific pattern instance, that we will refer to
as simple dispatching, is hardcoding a constant parameter
"F", thus making the target function resolvable from a
static analysis perspective. Other similar pattern instances
could be created. For instance, that constant could be first
assigned to a variable and that variable could be then used
as first parameter of call_user_func. Similarly, a
concatenation instruction could be used as first parameter
of the dynamic dispatching making the tarpit even more
challenging and so on and so forth.

To be comprehensive, the internal specifications, and
the APIs of both PHP and JS were reviewed and distilled
into many SAST testability patterns, around several cat-
egories (e.g., object-oriented programming, security, etc):
120 instances were created for PHP and 150 for JS. We
made all these patterns available to the entire web and
SAST community [2].

2.2. Measurement and advancement of security,
privacy and ML testing

Based on our patterns a comprehensive measurement
of current testing approaches will be conducted to identify
strenghts and weaknesses. Advanced techniques can be
then designed and implemented to overcome some of
these weaknesses (cf. lower green loop in Figure 1).

For SAST, we considered so far only the measurement
part. An arsenal of 11 commercial and open-source SAST
tools (6 for PHP and 5 for JS) were selected and measured
against the created pattern instances. The best commercial
tools were only able to handle 50% of the PHP and 60%
of the JS tarpits, thus potentially leaving large parts of
an application code unexplored. For instance, only 2 tools
over 6 were able to detect the XSS in the simple dispatch-
ing pattern instance outlined above. The measurements,
in [2] are detailed over the pattern categories showing
that certain SAST tools may exceed in a category and fall
short toward others. All these are precious information
for SAST tools’ owners and for the research community
trying to advance SAST. You can know very precisely
which pattern instances are blocking your tool and invest
enginnering effort to support them in a future release.

2.3. Web Application Analysis and Remediation

For our risk measurements and iterative testing pro-
cess, it is essential to reliably identify testability patterns

in the source code of a web application under test. Thus,
analysis techniques (mainly at the code level, but not
only) will be designed to detect the testability patterns.
Furthermore, following up on the results of our web
application analysis, we will investigate remediation tech-
niques such as code debloating and refactoring methods
to remove problematic code patterns or replacing them
with alternatives that are better handled by testing tools
(cf. upper yellow loop in Figure 1).

In the context of SAST, to measure the impact on
the unsupported tarpits, automated discovery rules were
implemented and run to analyse more than 3000 open-
source applications (the Testbed, in short). The experi-
ments demonstrate that these tarpits are very common in
the real world: the average project contains 21 different
tarpits and even the best SAST tool cannot process more
than 20 consecutive instructions without encountering a
tarpit that prevents it from correctly analyzing the code.
For instance, the dispatching pattern instance was discov-
ered in more than 500 projects in the Testbed. The ability
to automatically discover each tarpit brings many benefits.
First, it can provide immediate and precise feedback to
the developers about the tarpits in their code (e.g., by
integrating the discovery rules into an IDE plugin). This
information can then be used to make an informed deci-
sion about which combination of SAST tools are better
suited to analyze the code, which parts of the application
are blind spots for a static analyzer and thus may require a
more extensive code review process, and which region of
code could be refactored into more testable alternatives.

A few experiments were executed to evaluate the
power of code refactoring as a mean to make an applica-
tion more testable for SAST tools. By running SAST tools
both before and after the transformations, a significant im-
provement in the overall testability of the application was
observed. More than 400 new true positives emerged upon
transformations and 188 have been already confirmed by
the respective team, 55 of which affected very popular
projects with more than 1000 stars in Github.

3. Conclusion and future directions

The outcomes from the previous section confirm the
added-value of the overall approach of Figure 1, when
applied to SAST, not only in measuring testing tools, but
also and foremost in the impact of removing testability
patterns’ tarpits as a means to increase the testability of
web applications.

Besides maturing the work for SAST (e.g., by comput-
ing also vulnerability indicators and combining that with
testability to derive an overall risk score), we aim to apply
our approach to DAST, privacy and machine learning. The
core idea is to create testability patterns for all these areas
so to measure the available state-of-the-art testing tools,
advance/develop the techniques underlying these tools,
and mitigate these patterns whenever possible to increase
the testability of the application. For instance, we expect
many testability patterns to emerge as a means to probe
DAST crawlers. A failure in the crawling phase may leave
a large portion of the web application uncovered. On the
other hand, aware that privacy testing, when compared
to security testing, is still in its infancy, our research
in that area will focus on defining the scope of privacy

testing and implement privacy testing techniques to ad-
dress relevant and well-known web related privacy issues.
Last, but not least, we want to create testability patterns
which are hindering security and privacy testing of ML-
based components so to measure these patterns against
the many emerging tools to detect adversarial machine
learning attacks.

References

[1] Edgescan. 2020 vulnerability statistics report. 2020.

[2] Feras Al Kassar, Giulia Clerici, Luca Compagna, Fabian Yamaguchi,
and Davide Balzarotti. Testability Tarpits: the Impact of Code
Patterns on the Security Testing of Web Applications. In Network
and Distributed System Security (NDSS) Symposium, NDSS 22,
April 2022.

[3] TESTABLE consortium. TESTABLE: TestabiliTy Pattern-driven
Web Application Security and Privacy Testing. https://testable.eu/,
Accessed August 31, 2022.

https://testable.eu/

	Introduction
	Approach and results for SAST
	Testability patterns creation
	Measurement and advancement of security, privacy and ML testing
	Web Application Analysis and Remediation

	Conclusion and future directions
	References

