
Poster: Detecting Network Anomalies from Small Traffic Samples using Graph
Neural Network

Aviv Yehezkel
Cynamics

Israel
aviv@cynamics.ai

Eyal Elyashiv
Cynamics

Boston, US
eyal@cynamics.ai

Abstract—Detecting anomalies in computer networks is a
classic, long-term research problem. While almost every kind
of model architecture has been proposed, previous works
usually analyzed the entire network traffic. However, such
analysis implies high memory and processing overhead, and
is becoming less applicable for large networks. In this poster
we present a work in progress which studies a previously
under-researched setting where only a small fraction of the
network traffic is given. Our approach pre-processes the
samples and transforms the computer network into a graph
neural network (GNN). It distills node features, edge features
and graph representations to learn a vector embedding for
each endpoint which characterizes its normal behaviors.
Then, a link predictor model is used to estimate the likeli-
hood of network communications and detect anomalies.

Index Terms—Deep-Learning; Graph Neural Network; Net-
work Anomaly Detection; Network Security

1. Introduction

Detecting anomalies in computer networks is a classic,
long-term research problem. Almost every kind of model
architecture has been studied: statistical, clustering, clas-
sification, information-theory, deep-learning, and others
(see [1] for a recent comprehensive survey on network
anomaly detection). Specifically, various learning-based
approaches were used [2]–[6]. However, previous works
were based on analyzing the entire network traffic, which
is less applicable for large networks.

A much less-studied approach is the sampling ap-
proach, which is especially suitable for high-speed (gigabit
or more) or high throughput networks, where only a small
fraction of the packets (for example 1%) is being sampled
and summarized [7].

In a recent work, we showed how a small percent of
uniform sampling can be used to efficiently and accurately
detect network anomalies and attacks using the concept of
”auto-encoder losses transfer learning” [8]. Our approach
collected 1% network samples for each client, trained an
auto-encoder neural network for each client’s network and
then normalized all auto-encoder losses of the different
clients, providing the ability to transform loss vectors
of different client networks with potentially significant
varying characteristics, properties, and behaviors into a
similar statistical distribution. The normalized losses can
then be forwarded to a global detection model that detects
and classifies threats in a generalized way that is agnostic

to the specific client. We used extensive simulation study
to compare the ”sampled” approach to the existing “un-
sampled” state-of-the-art approach and showed its superior
detection accuracy.

In this poster, we present a work in progress which
intends to take our previous research one step deeper in
the network - from the gateways to the endpoints. The
proposed approach will transform the computer network
into a graph neural network (GNN). It will distill node
features, edge features and graph representations to learn
a vector embedding for each endpoint which characterizes
its normal behaviors. Then, a link predictor model will be
used to estimate the likelihood of network communica-
tions and detect anomalies in the endpoint level. As this
work is still in progress, the poster abstract will mainly
present our research idea and approach, without providing
evaluations and preliminary results.

In addition to the lower processing cost, a sampling-
based network anomaly detection approach has many ad-
vantages, such as: (a) Data privacy: the packet’s payload
is not analyzed at any moment; (b) built-in robustness
against sophisticated attacker utilizing ML techniques, due
to the randomized nature.

The key contributions of the work being presented in
the poster are:

• A novel approach for transforming a computer
network to graph neural network.

• Learning a vector, characterizing the normal be-
haviours of each endpoint, using multiple aspects
of the sampled traffic data (of the node, edge and
graph) and detecting anomalies in the endpoint
level in a manner that is agnostic to the traffic
volume and network size.

• A new method for network anomaly detection
using a small fraction of network samples based
on a combination of graph neural network and link
predictor model.

2. The Approach

The approach consists of three main stages (see in
Figure 1):

1) Computer networks are transformed to graph neu-
ral networks based on key aspects of the network
traffic, endpoints (nodes) and communications
(edges).



Figure 1. An high-level overview of the proposed approach.

2) A vector embedding is learned for each graph
node, characterizing its normal behaviors by fus-
ing together different node perspectives (node
features, edge features and graph representa-
tions).

3) A link-predictor model is trained to estimate a
likelihood of network communications and detect
anomalous links.

First, sampled IP flows1 data is collected from main
network gateways (e.g., firewalls and switches). Each
record represents a meta-data summarization of commu-
nication between two endpoints (IP addresses) in the
network with their flow details: source IP address, destina-
tion IP address, source port, destination port, IP protocol,
creation time, number of packets in flow, flow length in
bytes.

Then, the network traffic is transformed to a graph
neural network with two types of nodes:

• IP entities – the flow’s source and destination IPs.
• ”PPP” triplets entities – an ”artificial” node rep-

resenting the communication between IP entities,
composed of a combination between the flow’s
source port, destination port and IP protocol, i.e.,
(source port, IP protocol, destination port) triplet.

2.1. Building the Network Graph

In this stage, the raw sample data is used to build a
network graph with different node extraction methods for
the IP entities set and PPP triplets set.

The IP entities set consists of different network IP
entities. Every IP is first enriched with its network cate-
gory, either internal (local endpoint in the client network),
external (a public IP owned by the client network) or
public (public internet IP outside the client network). Both
internal and external IP entities are assigned with their
own node IDs.

Public IPs are processed differently: each public IP is
further enriched with its hosting country and organization
details, by querying an IP enrichment repository. Then,
each unique tuple of (country, organization) is assigned a
node ID. Thus, different public IPs that share the same
hosting country and organization will be assigned the
same ID and treated by the network graph as the same
entity. This is done to reduce the graph dimension and
improve the model generalization in inference-time for

1. A flow is defined as a set of IP packets sharing a set of common
properties, such as source/destination IP addresses and TCP/UDP ports.

new ”unseen” IPs, by ensuring that the same logical
communication will not be treated differently because of
different raw IP values.

The PPP set consists of triplets in the form of (source
port, IP protocol, destination port). It is also pre-processed
in order to reduce the network size and improve general-
ization. First, too-rare IP protocols with a total flow packet
count lower than a certain threshold (e.g., 0.1% of the
total count) are assigned a general IP protocol identifier,
so as not to negatively affect the model learning by their
significant imbalanced proportion. Then, an additional
pre-processing is done on the port values. Each port value
(source/destination) is assigned a category, according to
the Internet Assigned Numbers Authority (IANA [9]) port
range convention: common service ports have high signif-
icance and thus each will be assigned a unique identifier,
but client ports have low significance for their specific
value and thus will all be assigned a shared identifier.

After both protocols and ports are categorized, every
unique triplet of (categorized source port, categorized
IP protocol, categorized destination port) is assigned its
own node ID. The IP and PPP nodes together represent
our vocabulary. An additional dedicated graph node is
being created for out-of-vocabulary IP entities and/or PPP
triplets, mapping to a general unknown identifier.

Finally, the graph edges are created to transform each
flow of (source IP, PPP, destination IP) to two unidi-
rectional edges: the first is between source IP node to
PPP node, and the second is between the PPP node to
destination IP node. The main building blocks of this stage
are summarized in Figure 2.

2.2. Training Vector Embeddings

In this stage we employ a graph embedding technique
to distill node features, edge (link) features (between
graph nodes) and graph structure information to learn
a vector embedding representation to each node. These
embeddings provide a “network context” for each of the
network entities that will be used in the last stage for
learning a link predictor and detecting anomalies.

We will use several edges types:
• By average packet volume to account for different

traffic volumes sent over the flow. We will create
10 different edge types by splitting the flow packet
count to 10 equal sized bins.

• By time of day. We will create 24 different edge
types by splitting the flow by its hour.

We will use several node features, creating a vector
for each node consisting of: IP address subnet B ID



Figure 2. Overview of the main building blocks used for creating the network graph.

(255.255.X.X) , IP address subnet C ID (255.255.255.X),
IP address country ID , IP address organization ID and
network location category (internal, external or public).

Then, the embeddings will be learned based on the
metapath2vec algorithm of graph walks [10]. Each node
is sampled for random graph “walks” or paths, starting
from the selected node. This process results in a 200-
length vector embedding learned for each node for each
one of the 36 extracted graphs (10 packet volume average
graphs and 24 hourly graphs). Thus, each graph node
is represented by a (36, 200) matrix. To reach a one-
dimensional node representation, the 36 node vectors are
averaged to a single 200-length vector. The main building
blocks of this stage are summarized in Figure 3.

Figure 3. Overview of the main building blocks used for learning graph
node embeddings.

2.3. Link Predictor Model

In the final stage, a link predictor model is being
trained to detect anomalies. Traditionally, a link predictor
model is given a pair of graph nodes and is trained to
estimate the likelihood for an edge between them [11].

In our case, the link predictor model will learn to
estimate a likelihood for network communications: given a
triplet combination (IP node, PPP node, IP node) as input,
instead of the traditional 2-node single graph connection.
Positive labeled inputs are sampled from the given data,
and negative labeled inputs are generated by pairing ran-
dom triplets that were not part of the given data. Finally,
combining the positive and negative datasets forms the
input data for the link predictor model.

The link predictor architecture is a feed-forward neural
network that consists of the following layers (presented in
Figure 4):

• An input embedding layer, with an input size of
(3, 200) accounting for input triplet of (IP,PPP,IP),
each embedding of size 200.

• A flatten operation combining the 3 input node
vectors.

• Two dense layers with ReLU activation.
• A final output dense layer with sigmoid activation

to output a likelihood probability.

Training loss will be calculated with binary cross-entropy
loss, and network optimization will be done using a

Figure 4. The link predictor model architecture.

stochastic gradient descent algorithm, such as the Adam
optimizer.

At the final stage, model inference will be done in real-
time using a predetermined probability threshold, detect-
ing network connections beneath the threshold as anoma-
lies. The threshold will be learned statistically after the
model training (e.g., the 99.99th probabilities’ percentile).

References

[1] Gilberto Junior, Joel Rodrigues, Luiz Carvalho, Jalal Al-Muhtadi,
and Mario Proença. A comprehensive survey on network anomaly
detection. Telecommunication Systems, 2019.

[2] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai.
Kitsune: an ensemble of autoencoders for online network intrusion
detection. NDSS, 2018.

[3] Sawsan Abdul Rahman, Hanine Tout, Chamseddine Talhi, and
Azzam Mourad. Internet of things intrusion detection: Centralized,
on-device, or federated learning? IEEE Network, 34(6), 2020.

[4] Ying Zhao, Junjun Chen, Di Wu, Jian Teng, and Shui Yu. Multi-
task network anomaly detection using federated learning. In
Proceedings of the 10th international symposium on information
and communication technology, 2019.

[5] Poonam Mehetrey, Behrooz Shahriari, and Melody Moh. Col-
laborative ensemble-learning based intrusion detection systems
for clouds. In 2016 International Conference on Collaboration
Technologies and Systems (CTS).

[6] Lianbing Deng, Daming Li, Xiang Yao, David Cox, and Haoxiang
Wang. Mobile network intrusion detection for iot system based on
transfer learning algorithm. Cluster Computing, 22(4), 2019.

[7] Baek-Young Choi and Supratik Bhattacharyya. On the accuracy
and overhead of cisco sampled netflow. 2005.

[8] Aviv Yehezkel, Eyal Elyashiv, and Or Soffer. Network anomaly
detection using transfer learning based on auto-encoders loss nor-
malization. In Proceedings of the 14th ACM Workshop on Artificial
Intelligence and Security (AISec), 2021.

[9] Michelle Cotton, Lars Eggert, Dr. Joseph D. Touch, Magnus West-
erlund, and Stuart Cheshire. Internet Assigned Numbers Authority
(IANA) Procedures for the Management of the Service Name and
Transport Protocol Port Number Registry. RFC 6335, 2011.

[10] Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. meta-
path2vec: Scalable representation learning for heterogeneous net-
works. KDD, 2017.

[11] Muhan Zhang and Yixin Chen. Link prediction based on graph
neural networks. NIPS, 2018.



https://www.linkedin.com/company/cynamics
https://www.cynamics.ai/
https://www.youtube.com/channel/UCl5IEC7p-7Q4CO_hziAto4Q
https://twitter.com/Cynamics_ai

	Introduction
	The Approach
	Building the Network Graph
	Training Vector Embeddings
	Link Predictor Model

	References

