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Abstract—Adversarial perturbations are claimed to enlarge
the attack surface of machine learning models. However, as
the most prominent attack methodologies require unrealistically
strong adversaries, they are hardly used in attacks against real-
world systems. In this paper, we alleviate the constraints on the
threat model and attack a face recognition system with physically
realizable perturbations in a black-box scenario, provided a single
attack attempt. As such, we are forced to rely on more pragmatic,
but less effective, attack methods that leverage transferability –
adversarial perturbations successful on known models tend to
also work on unknown ones. We overcome the poor attack success
rate of transferability by using adversarially trained surrogate
models.

I. INTRODUCTION

A well-known problem of neural networks is their suscepti-
bility to adversarial examples, e.g., images perturbed in such a
way that changes are imperceptible to humans but impair the
standard operation of neural networks. Despite a large body of
work on methodologies to generate adversarial examples, the
number of attacks on real-world models that take advantage
of them is limited. This low prevalence in real-world attacks
can be explained by the restrictiveness of the threat model
that is present in practical ML-based systems. Attacking such
systems requires a strong adversary with capabilities that are
often unrealistic in practice. Moreover, the adversary’s aim
is to evade a face recognition system without knowledge
about the network architecture but does possess information
about a limited number of identities that can be recognized.
Furthermore, the adversary’s goal is to evade detection on the
first try and is therefore limited to a single query without
digital access to the target model.

Therefore, the adversary needs to rely on robust surrogate
models to find a physical adversarial perturbation in the shape
of glasses [1]. It is shown by previous studies [2]–[4] that
robust models learn more universal representations of the
training data as opposed to non-robust models. As such, the
robust model learns better generalizing features, which serves
as evidence that adversarial perturbations generated on robust
surrogate models target features which are also present in other
networks that fulfill a similar purpose.

II. RELATED WORK

In this section, we introduce related work that motivates
the use of adversarially trained surrogate models to increase
transfer-based adversarial examples.

Transferability allows an adversary to generate adversarial
examples on a known model and use these to attack unknown

models. Although transfer-based attacks have a relatively low
success rate compared to other attack methods [5]–[8], their
major benefit is the limited query amount to the target model.

One proposed method to increase the low success rate
of transfer-based adversarial examples is to generate them
on surrogate models that have been adversarially trained on
attacks of similar nature [9]. The reason behind this is that
models robust against adversarial examples learn more gener-
alizing features that are shared with other DNNs. Therefore,
adversarial examples that exploit these features transfer better
than those generated on non-robust DNNs.

Increasing the success rate of transfer-based adversarial
examples has been explored further in the scope of digital
adversarial examples [3], [4], [10]–[12]. Yet, similar to the
transferability of adversarial examples, current understanding
of this topic remains incomplete, especially for physical ad-
versarial examples.

III. ATTACK METHODOLOGY AND EXPERIMENTAL SETUP

In this section, we first describe the attack methodology
followed by the experimental setup; among others, we specify
how the adversarial perturbations are generated, and describe
the data and models used.

A. Attack methodology

1) Obtain a collection of samples to train the surrogate
model. This contains samples of the attacker that ulti-
mately need to be misclassified, but also samples from
other identities assumed to be recognized by the model
under attack.

2) Perform adversarial training on the surrogate model with
the collected set of samples by finding optimal perturba-
tions.

3) Use the newly robust surrogate model to craft adversarial
examples and only utilize those that are successful on the
surrogate while their benign counterpart is also classified
correctly.

4) Use the attacks that successfully fooled the surrogate
model to attack the target model.

B. Experimental setup

To perform our evaluation in light of face recognition we
require: 1) a sufficiently large face dataset which can be
split into two training and one attack portion, 2) different
model architectures, 3) a methodology to generate physical
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realizable attacks, and 4) models with a varying degree of
robustness to obtain the adversarial test sets.

In the following we describe how we obtain each of the
aforementioned requirements.

Req. 1: In contrast to prior work that investigates transfer-
ability between DNNs that classify identical classes [9], [13],
we make a distinction between the identities recognized by the
face recognition surrogate- and target model with some degree
of overlap. We therefore use a portion of the VGGFACE2-
dataset [14] and split this into three distinct subsets, each
consisting of 400 identities that represent one core dataset
shared by both surrogate- and target model and one additional
set of identities for both the surrogate and target model
respectively.

Req. 2: We consider the following architectures for both
the surrogate- and target models, for which we use pre-
trained weights: VGGFace pretrained on the VGGFace dataset
[14], Facenet pretrained on the VGGFACE2 dataset [15] and
VGG19 pretrained on the VGGFACE2 dataset. We fine-tune
these models with our data, such that they classify the adequate
set of identities.

Req. 3: Our physically realizable adversarial examples are
based on the work by Sharif et al. [1]. we consider physically
realizable adversarial examples with localized perturbations in
the shape of glass frames. The adversarial glasses are always
cropped to match the size of a person’s face and rotated
accordingly.

Req. 4: We first construct a number of increasingly robust
classifiers and then use these to construct test sets containing
adversarial examples. Robust classifiers f̂i are obtained with
adversarial training on the initial classifier f , for a number
of epochs i with adversarial examples generated from our
dataset D. For each surrogate model, we then generate a test
set D̂i containing adversarial examples that are misclassified,
and thus successful as an attack. Adversarial attacks are only
added to the adversarial test set if their benign counterpart is
still classified correctly by the surrogate model. This allows
us to partially mitigate the effect of the well-known problem
where adversarial training causes a drop in standard accuracy
[16], [17]. Subsequently, we use these test sets to evaluate the
transferability of our robustly generated adversarial examples
to other classifiers. We only consider adversarial examples on
the target model when their benign counterpart is also classi-
fied correctly. This is an important assumption, as it is very
likely whenever a benign sample is misclassified, its resulting
adversarial examples are also likely to be misclassified.

IV. EVALUATION

We use the adversarial test sets generated on the surrogate
models to attack the different target models and measure the
transfer rate across them.

First, we demonstrate that adversarial examples generated
on robust surrogate models have a higher probability of
success when used to attack target models. In order to do
so, we compare the transfer rates of attacks in adversarial test
sets D̂0 and D̂max, where D̂0 contains adversarial examples

generated on the non-adversarially trained surrogate and D̂max

contains adversarial examples generated on the most robust
surrogate. Fig. 1 shows the distribution of transfer rates for
both D̂0 (non-robust) and D̂max (robust) when they are used
to attack different target models. The target models considered
are both not adversarially trained, and adversarially trained
using the adversarial examples of similar nature. The transfer
rate of adversarial examples generated on robust surrogate
models increases from an average of 27% to 40% and from 4%
to 15% for non-robust and robust target models respectively.

This shows that even when the target model is robust against
the considered adversarial examples, the attack success rate
can be increased when using robust surrogate models.

Next, Fig. 2 shows that as model robustness increases as
a result of adversarial training, so does the transferability
of physical realizable adversarial examples. This is in line
with findings in previous work that claims that the classifier
becomes more robust to adversarial examples, they rely more
on robust features instead of non-robust features. As a result,
features learned by robust classifiers benefit a higher degree
of universality, whereas non-robust features are less universal
and thus transfer worse [12].

Fig. 1: KDE-plot of the transfer ratio of physical realizable
adversarial examples generated on robust and non-robust sur-
rogate models and transferred to non-robust and robust target
models.

V. DISCUSSION

This section discusses the main implications of our work,
shortcomings, and possible directions for future work.

a) Security implications: In this work, we aimed to in-
crease the transferability of physical adversarial perturbations
to better accommodate threat models that require physically
realizable perturbations against black-box models with a near
zero-query budget. Our results extend the findings of recent
works [3], [9]–[11] that already provided evidence that the
transfer rate of adversarial examples with unlocalized per-
turbations increases when generated on robust classifiers. In
this work, we leverage these findings and propose model
robustness as a prior for the generation of physical realizable
adversarial examples. Specifically, we demonstrate an impres-
sive increase in attack success rate between 1.5x and 7x against
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Fig. 2: Average transfer rates for increasingly robust surrogate
models. The X-axis represents the accuracy on adversarial
examples of the surrogate model, the y-axis represents the
transfer rate to different black box target models.

face recognition systems when using robust surrogate models
over their non-robust counterparts. On the one hand, with an
absolute success rate which varies between 6 and 56% we are
not consistently evading detection by face recognition systems.
On the other hand, in an impersonation scenario against an
authentication system, such an increase is significant, as often
multiple authentication attempts are allowed [18], e.g., FaceID
allows five authentication attempts before switching to PIN
input.

b) Validity threats: The experimental setup inherits sev-
eral less realistic assumptions on the proposed threat model
which we attempt to solve in our current ongoing work.

We assume both target- and surrogate models use partially
overlapping datasets in their training procedure. This is an
exaggerated simplification of a real-world scenario where an
attacker has limited to no knowledge of the data used to train
the target model. However, we assume that further minimizing
this overlap will have a limited impact on our results because
the intuition behind deep neural networks is that they can
distribute feature space evenly across different classes, separat-
ing each class with similar distances to each other. Therefore,
we propose the use of feature extractors to overcome relying
on overlapping datasets which, in turn, also relates better
to face recognition/authentication as an open-world problem.
Furthermore, we plan on considering impersonation attacks as
well to bridge the transition to authentication.

VI. CONCLUSION

In this paper, we propose a method to increase the attack
success rate of adversarial examples to face recognition sys-
tems in a highly restrictive, yet realistic black-box setting. We
do so by leveraging and enhancing the transferability property
of adversarial examples that are realizable in the physical
world by generating attacks on adversarially trained surrogate
models. Specifically, we found that using a robust surrogate
model over its non-robust counterpart drastically increases
transferability with a factor of 1.5 up to 7 for single attempt
attacks compared to the state-of-the-art. Moreover, even in

the case of low absolute attack success rates such increases
are significant for attacks against applications that allow for
more than one attempt but implement rate limiting, e.g.,
face authentication systems. In conclusion, we believe that
this work provides a compelling contribution to the creation
of adversarial examples that impose a significant threat to
practical machine learning applications.

REFERENCES

[1] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, “Accessorize to
a crime: Real and stealthy attacks on state-of-the-art face recognition,”
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016.

[2] A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and A. Madry,
“Adversarial examples are not bugs, they are features,” 2019.

[3] M. Terzi, A. Achille, M. Maggipinto, and G. A. Susto, “Adver-
sarial Training Reduces Information and Improves Transferability,”
arXiv:2007.11259 [cs, stat], Dec. 2020. arXiv: 2007.11259.

[4] J. M. Springer, M. Mitchell, and G. T. Kenyon, “A little robustness goes
a long way: Leveraging robust features for targeted transfer attacks,”
2021.

[5] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and Harnessing
Adversarial Examples,” arXiv:1412.6572 [cs, stat], Mar. 2015. arXiv:
1412.6572.

[6] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into Transferable
Adversarial Examples and Black-box Attacks,” arXiv:1611.02770 [cs],
Feb. 2017. arXiv: 1611.02770.

[7] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” 2017.

[8] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in Ma-
chine Learning: from Phenomena to Black-Box Attacks using Adver-
sarial Samples,” arXiv:1605.07277 [cs], May 2016. arXiv: 1605.07277.

[9] J. M. Springer, M. Mitchell, and G. T. Kenyon, “Adversarial perturba-
tions are not so weird: Entanglement of robust and non-robust features
in neural network classifiers,” 2021.

[10] H. Salman, A. Ilyas, L. Engstrom, A. Kapoor, and A. Madry, “Do Adver-
sarially Robust ImageNet Models Transfer Better?,” arXiv:2007.08489
[cs, stat], Dec. 2020. arXiv: 2007.08489.

[11] S. Shan, E. Wenger, J. Zhang, H. Li, H. Zheng, and B. Y. Zhao, “Fawkes:
Protecting privacy against unauthorized deep learning models,” 2020.

[12] J. M. Springer, M. Mitchell, and G. T. Kenyon, “Adversarial Pertur-
bations Are Not So Weird: Entanglement of Robust and Non-Robust
Features in Neural Network Classifiers,” arXiv:2102.05110 [cs], Feb.
2021. arXiv: 2102.05110.

[13] F. Utrera, E. Kravitz, N. B. Erichson, R. Khanna, and M. W. Ma-
honey, “Adversarially-Trained Deep Nets Transfer Better: Illustration on
Image Classification,” arXiv:2007.05869 [cs, stat], Apr. 2021. arXiv:
2007.05869.

[14] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,”
in British Machine Vision Conference, 2015.

[15] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, “Vggface2:
A dataset for recognising faces across pose and age,” 2018.

[16] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry,
“Robustness may be at odds with accuracy,” 2019.

[17] H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui, and M. I. Jordan,
“Theoretically principled trade-off between robustness and accuracy,”
2019.

[18] P. Markert, D. V. Bailey, M. Golla, M. Dürmuth, and A. J. Aviv, “This
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(1) closed-world → open-world assumption:
➔ Current simplified experiment setup: classifier that recognizes 

predetermined set of identities used during model training. 
➔ Extend to rely on feature extraction: recognize any identity independent 

of training based on distance metrics.
 

(2) (Evasion +) impersonation attack goal:
➔ Current experiments only involve untargeted attacks = evasion
➔ Extend with targeted attacks = impersonate some chosen target identity

Future

Adversarial examples: Seemingly benign images that cause misclassification in a 
machine learning model.

Problem Motivation

Classic adversarial examples
➔ Requires digital access to 

target
➔ Limit on perturbation 

magnitude
➔ Global perturbations are 

not always possible 

Physical adversarial examples
➔ Only requires physical access 

to target
➔ No  limited perturbation 

magnitude
➔ Localized perturbations

Transfer-based attacks against black box model
➔ Relates to real-world scenario
➔ No query access required
➔ On-the-spot attack generation

Background

Adversarial training reduces 
influence of non-robust 

features1

Robust features are shared 
between different models = 

universal2

Adversarially examples generated 
on adversarially trained  DNN 

exploit universal features.2

Contributions
1. Improved single-attempt success rate against black box models.

Increased top1-ASR with a factor up to 7.

2. Security implications against black-box models with low query budget.

Results

Top-1 ASR against standard 
models (top)  & robust models 

(bottom).

Black-box 
DNN

Approach

Simplified experiment setup

800 Identities

800 Identities

400 Identities

Surrogate 
model dataset

Target model 
dataset

3. Unknown 
target model

1. No digital 
access

2. Zero-query 
budget
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