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Abstract—Face authentication lacks key metrics to assess
the robustness of users’ representation within the system.
We fill the gap by investigating face uniqueness, which
is the distinctiveness of a face within a population, as
a proxy for robustness against adversarial examples. By
generating malicious input that escapes face verification, a
dodging attack, we show a correlation between the amount
of perturbation needed for successfully attacking a user and
their uniqueness within a dataset. Our experiments span over
multiple networks under a realistic threat model, indicating
that unique users are significantly more resilient to gradient-
based attacks than non-unique ones.
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1. Introduction

Unique faces are those that are decidedly different
from the rest of the population while being easy to recog-
nize [1]. In modern face recognition, biometric uniqueness
is directly affected by the separation between two distribu-
tions: the scores originated from matching two samples of
the same user, i.e. the genuine distribution, and the scores
derived from matching samples of different users, i.e. the
impostor distribution.

It is well known that different faces exhibit varying
performance within a system [2], which is linked to their
relative uniqueness within a dataset. These performance
are mainly expressed in terms of False Acceptance Rate
(FAR), which comes from the mislabeling of a user, and
False Rejection Rate (FRR), which is failing to match
two samples of the same user. Identifying groups of users
who contribute disproportionately to a type of error can
uncover their vulnerabilities, eventually improving their
resilience. The Doddington’s Zoo [3], shown in Fig. 1,
is the first attempt to categorize users based on their
verification performance, dividing between the score dis-
tribution of classes that cause the errors (goats, lambs, and
wolves) and the distribution of the average user (sheep).
The existence of these classes was later confirmed for
a number of biometric modalities, including faces, and
expanded to new classes in a concept known as biometric
menagerie [2].

However, studies on the menagerie are usually dis-
connected from those on the security of modern face
recognition. The advent of deep learning has boosted face
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Figure 1. The four major classes of the Doddington’s Zoo with,
overlapped in the background, the vulnerability to evasion attacks.

matching accuracy while broadening the threat surface.
The assumption that training and test data are independent
and identically distributed (i.i.d.) has proven to be hard to
satisfy in practice, hence shifts in the data distribution
affect algorithm performance and lead to poor generaliza-
tion. In a malicious setting, imperceptible modifications
known as adversarial examples can fool a system into
assigning the wrong label to its input [4]. This shift
represents a violation of the i.i.d. assumption, contributing
to the overall FAR and FRR of a system in a way
previously not envisioned by animal categorizations like
the Doddington’s Zoo. Users who are contributing to the
errors of a system (e.g. goats and lambs) need to be
reconsidered in light of the novel threats posed by dataset
shifts.

In our analysis we use a measure of uniqueness based
on entropy to gather novel insights on the robustness
of face recognition systems against adversarial examples.
Motivated by modern tools [5], we construct a realistic
yet simplified scenario of image publishing, where a user
hides their identity before uploading a picture online. The
attacker creates a human-imperceptible adversarial mask
with the aim of fooling a face verification system that
performs 1-vs-1 matching between a pair of images, which
is called a dodging-attack. The amount of perturbation
needed to escape matching will serve as an indicator of
robustness towards an attack. We show that this notion of
robustness is correlated with how well a user is embedded
in the feature space, i.e. entropy-based uniqueness.



2. Methods

Our analysis can be divided in the following steps:

1) We compute the uniqueness of a set of users via
Kullback-Leibler (KL) divergence estimation.

2) For a subset of the total users, we generate ad-
versarial examples and derive attack robustness.

3) We correlate between uniqueness and robustness.
4) We quantify the unique and non-unique identities

shared between networks.

2.1. Computing Uniqueness

Balazia et. al [1] approximate the KL divergence by
using a distance estimator D(x, S) that measures the
average dissimilarity between a vector x and a set of
vectors S in the embedding space. If Therefore, assuming
|G| = |I|, the uniqueness U is equal to

KL(pg|pi) ≈ U(G, I) =
1

|G|
∑
g∈G

log
D(g, I)

D(g,G)
(1)

where D(g,G) measures the average distance of a
template g from embeddings of the genuine distribution
G, and D(g, I) performs the same measurement towards
the embeddings of other users, the impostor distribution
I . It is possible to separate the contribution of the genuine
scores, i.e. intra-class, from the one relative to the distance
between genuine and impostor, i.e. inter-class:

U(G, I) = InterU(G, I) + IntraU(G) (2)

InterU(G, I) =
1

|G|
∑
g∈G

logD(g, I) (3)

IntraU(G) = − 1

|G|
∑
g∈G

logD(g,G) (4)

2.2. Computing Attack Robustness

We define the robustness of an image, and by exten-
sion of a user, by computing the amount of perturbation in
the input space needed for the adversarial example xadv to
cross the verification threshold θ, causing the mislabeling.
We define this measure as Lowest Perturbation Budget
(LPB). Given an embedding network f and a perturbation
budget ϵ, we maximize the distance D:

argmaxD(f(xadv), f(x)), s.t. ∥xadv − x∥p < ϵ (5)

Since ϵ is a parameter to be decided before carrying
out the attack, the LPB of an image x, and by extension
of a user, is found by performing a binary search:

LPB(x) = min ϵ, s.t. D(f(xadv), f(x)) < θ (6)

TABLE 1. NETWORKS PERFORMANCES ON THE LFW DATASET.

Model ACC TAR0.05% U IntraU InterU

FT 99.82 99.73 0.527 -2.939 3.467
FTo 99.75 99.60 0.535 -2.932 3.467
MF 99.43 98.20 0.437 -3.029 3.466
IR50-S 99.60 98.17 0.680 -2.786 3.466
IR50-C 99.68 99.17 0.512 -2.955 3.466
FN 99.23 85.80 0.730 -2.735 3.465

2.3. Correlation Analysis

Having computed the Uk,f and LPBk,f for each
user k, from embeddings computed using a model f , we
are interested in the strength of the association between
the two variables. We perform a correlation analysis by
computing Kendall’s τ score. Fixing a model f , given n
pairs (Ux, LPBx),

τ =
nc − nd(

n
2

) (7)

where nc denotes the number of concordant pairs and
nd is the number of discordant pairs. A pair is concordant
if given two users i and j, (Ui, Uj) and (LPBi, LPBj)
have the same ordinal relationship (vice versa they are
discordant). Therefore, τ measures the pairwise ordinal
concordance between two variables, which is their mono-
tonic relationship.

3. Results

In this section, the experimental setup is followed by
an analysis of the results.

Experimental setup. Inspired by anti-facial recognition
tools [5], we create adversarial examples by using the
widely adopted gradient-based strategy FGSM and its
iterative version BIM, both under the l2 and linf norms.
The attack is white-box and does not include a defensive
strategy, which goes beyond the scope of our analysis.
The attacked embedding networks are representative of the
spectrum of SoTA face recognition solutions: FaceTrans-
former with and without overlapping patches (FT and
FTo), MobileFace (MF), Inception-ResNet trained with a
softmax and CosFace loss function (IR50-S and IR50-
C), and FaceNet (FN). They share similarities that allow
to selectively exclude the contribution of certain covari-
ates when we focus on one single aspect of the models.
RobFR [6] provides the backbone implementations on top
of which we perform our white-box attack 1.

As test dataset, we pick the Labelled Faces in the
Wild (LFW) [7]. LFW has the advantage of a big sample
size, variability, and does not overlap with the training
dataset of the attacked networks. From LFW we derive
two subsets: lfw-U which is used to compute uniqueness,
and lfw-R which is a further refined sample list to compute
LPB scores.

Analysis. Table 1 displays the Uniqueness U and its
intra-class and inter-class components. Surprisingly, the

1. https://github.com/ShawnXYang/Face-Robustness-Benchmark.

https://github.com/ShawnXYang/Face-Robustness-Benchmark
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Figure 2. On the left, linear regression between LPB and U with
CI=95%. On the right, percentage of shared identities across models
as we increase the most or least unique users.

network with the highest system uniqueness, i.e. FaceNet,
is the worst performing one on LFW. This is because U
delves deep into the score distribution, providing informa-
tion that go beyond the average case.

Table 2 shows a moderate-to-strong correlation be-
tween the uniqueness of a user Uk and the average lowest
perturbation budget needed to escape verification LPBk.
IntraU closely resembles the correlation of the overall U.
This is expected since IntraU explains most of variance
of U (see Table 1). Differently, the correlation analyses
between LPB and InterU show little negative correlation
and are, in most cases, not statistically significant (p-value
greater than 0.05). Nonetheless, FaceTransformerOverlap
scores have a weak negative correlation in the case of
the BIM attack that is significant and worth of further
investigations. Fig. 2 (left) shows the U score as a function
of LPB for FaceTransformerOverlap and the (BIM,l2)
attack.

The results have an interpretation from a Doddington’s
Zoo perspective (Fig. 1). Goats are users whose intraU is
particularly low and are therefore especially susceptible
to the class of attacks under study. On the other side of
the spectrum, lambs, sheep and wolves are all eligible
to containing a set of users with increased robustness
compared to the average case. These users are the ones
with higher U (and IntraU). Animal groups have been
used to create adapting strategies that move verification
threshold in order to cope with, e.g., large intra-class
variance [8]. While adaptive thresholding can positively
affect the FAR of the system in the benign case, moving
the threshold triggers a cascade effect on the perturba-
tion budgets needed to escape verification. Hence these
strategies should account for the consequences on the
robustness of the users.

Fig. 2 (right) plots the intersection rate between all
the models as a function of the most unique and least
unique K% users for the (FGSM,linf ) configuration 2.
To highlight the significance of the intersection rates, a
baseline is added to the graph showing the intersection
rates for a random sampling of users repeated 6 times (as
many as the number of considered models).

4. Conclusion

Our analysis underlines the strong existing correlation
between the resilience of a user against dodging attacks
and the their distinctiveness within the population. This
gives a clear indication whether a face is harder to protect

2. Notably, the results hold for all the combinations (method, norm).

TABLE 2. KENDALL’S τ BETWEEN THE U SCORES AND LPB OF THE
USERS IN THE lfw-U LIST. A MODERATE-TO-STRONG POSITIVE

CORRELATION IS FOUND FOR U AND INTRAU.

Model Attack Norm τU τIntraU τInterU

FT BIM l2 0.38 0.39 -0.17
FT BIM linf 0.34 0.34 -0.15
FT FGSM l2 0.38 0.38 0.00
FT FGSM linf 0.44 0.44 0.02
FTo BIM l2 0.40 0.41 -0.26
FTo BIM linf 0.35 0.36 -0.26
FTo FGSM l2 0.39 0.39 -0.08
FTo FGSM linf 0.46 0.46 -0.11
MF BIM l2 0.45 0.46 -0.16
MF BIM linf 0.40 0.41 -0.19
MF FGSM l2 0.41 0.42 -0.08
MF FGSM linf 0.45 0.45 -0.09
IR50-S BIM l2 0.43 0.43 0.03
IR50-S BIM linf 0.39 0.40 0.04
IR50-S FGSM l2 0.43 0.42 0.05
IR50-S FGSM linf 0.47 0.46 0.07
IR50-C BIM l2 0.49 0.49 -0.17
IR50-C BIM linf 0.45 0.45 -0.17
IR50-C FGSM l2 0.41 0.39 -0.10
IR50-C FGSM linf 0.47 0.45 -0.09
FN BIM l2 0.44 0.45 -0.20
FN BIM linf 0.41 0.42 -0.16
FN FGSM l2 0.37 0.39 -0.16
FN FGSM linf 0.43 0.43 -0.14

using Anti-Facial recognition [5], emerging privacy tools
that rely on adversarial perturbations. Our exploration of
the embedding space can be expanded beyond the class
of dataset shift we take into consideration for our experi-
ments, to account for different attacks, like impersonation,
and benign covariate shifts, like changes in lighting condi-
tions. The implications of our findings range from a better
characterization of biometric system performance to a new
understanding of what makes a face, therefore a user, more
resilient against gradient-based adversarial attacks.
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- Face systems lack metrics to assess system robustness

- Traditional metrics limited to accuracy and spoofing

- Novel threats like adversarial examples are overlooked


- The Doddington’s Zoo categorizes users in categories

- Grouped by contribution to the total error rate

- Linked to the notion of User Uniqueness:  

distinctiveness of a user within a population


➡ The link between Uniqueness and Robustness 
against novel threats needs further investigation
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Motivation Threat Model: Evasion

✓ A strong correlation exists between the resilience of a user against evasion attacks and their 
distinctiveness within the population


✓ Uniqueness is shared across neural networks, especially in presence of architectural similarities


✓ The implications of our findings range from a better characterization of biometric system performance 
to a new understanding of what makes a face more resilient against gradient-based attacks


➡ We aim to expand the scope of our experiments beyond evasion, e.g., impersonation attacks

Experimental Approach

1a) Face Embeddings

2b) Robustness (LPB) := 
lowest successful input 
perturbation budget ε

3) Correlation Analysis  
between U and LPB 

for each user
4) Sharing of Unique 

identities across similar  
and different models

- Kendall’s τ rank correlation coefficient 
signals a moderate-to-strong relationship

Conclusion and Future Work

Correlation AnalysisSharing of Unique IDs

+LJK�FRQÀGHQFH /RZ�FRQÀGHQFH 0LVPDWFK

,QSXW�VSDFH

(PEHGGLQJ�VSDFH

$QFKRU

6KHHS

$YHUDJH�*HQXLQH�6LPLODULW\

$Y
HU
DJ

H�
,P

SR
VW
RU
�6
LP

LOD
ULW
\

/DPEV
:ROYHV

*RDWV

9XOQHUDELOW\�WR�$WWDFN

$

&%
)DFH�PDQLIROG

'

ORZ�XQLTXHQHVV
KLJK�XQLTXHQHVV

1b) Adversarial Examples

TABLE 1. KENDALL’S ⌧ BETWEEN THE U SCORES AND LPB OF THE
USERS IN THE lfw-U LIST. A MODERATE-TO-STRONG POSITIVE

CORRELATION IS FOUND FOR U AND INTRAU.

Model Attack Norm ⌧U ⌧IntraU

FT BIM l2 0.38 0.39
FTo BIM l2 0.40 0.41
MF BIM l2 0.45 0.46
IR50-S BIM l2 0.43 0.43
IR50-C BIM l2 0.49 0.49
FN BIM l2 0.44 0.45
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2a) Uniqueness (U) := 
relative entropy between 

genuine and impostor scores

Input images Adversarial examples

Hypothesis on Uniqueness and Robustness
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