Poster: A practical methodology for ML-Based EM Side Channel Disassemblers
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Abstract—Providing security guarantees for embedded de-
vices with limited interface capabilities is an increasingly
crucial task. Although these devices don’t have traditional
interfaces, they still generate unintentional electromagnetic
signals that correlate with the instructions being executed. By
collecting these traces using our methodology and leveraging
a random forest algorithm to develop a machine learning
model, we built an EM side channel based instruction level
disassembler. The disassembler was tested on an Arduino
UNO board, yielding an accuracy of 88.69% instruction
recognition for traces from twelve instructions captured
at a single location in the device; this is an improvement
compared to the 75.6% (for twenty instructions) reported in
previous similar work.

Index Terms—electromagnetism, side-channel, disassembly,
security

1. Introduction

Embedded devices form an integral part of the modern
computing ecosystem. They can be found in a myriad
of applications, ranging from household appliances to
security-critical industrial controllers. Securing this wide
range of devices is a massive and crucial design challenge,
especially with the rise in connectivity of the Internet of
Things and emerging threats [1]. Many of these devices,
such as fuel tank monitors or farming field sensors, offer
little insight into their internal workings due to proprietary
technology or limited interfaces. Additionally, devices
such as medical devices might be deployed long-term,
with little or no ability to update their software against
cyberthreats. This combination of longevity and minimal
access create a situation where devices are susceptible to
many forms of attacks, including disrupting functionality,
falsifying sensor output, and increasing power consump-
tion to drain batteries [2].

One proposed approach to the challenge of protecting
embedded devices against these attacks is to use side-
channel information. Side-channels refer to information
that is leaked by unintentional signals generated in the
normal operation of a processor. There are many forms of
side-channel, including power, noise, electromagnetism,
timing, etc [3] [4] [5]. In each case, the signal is correlated
to the operations that generated them, so that information
about those operations can be retrieved from the signal.
Of these, power side-channels offer the clearest signal,
and have consequently received more attention from re-
searchers. However, they require a direct connection to the
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processor’s power rail. Electromagnetic signals, however,
can be captured with no physical connection, making them
more preferable as a side-channel security mechanism.

In this work we propose an efficient approach for
building an electromagnetic side-channel based disas-
sembler, which can identify specific instructions being
executed on an embedded processor. We then use our
approach to build a proof-of-concept EM-based disassem-
bler to be used for implementing anomaly detection and
control flow mechanisms on low-cost embedded systems
without the need for firmware or hardware redesign. In
comparison with previous work [6], [7] that uses wiring or
multiple measurement points, our approach leverages the
presence in the device’s board of electronic components
that generate EM emanations (e.g., amplifiers) correlated
to the internal processor operations. Using a simple ran-
dom forest algorithm for classification, we achieve single
instruction granularity with 88.69% accuracy over twelve
different instructions on an ATMega328P 16MHz pro-
cessor. This is an improvement over previous work [6]
which required multiple measurement points and was only
tested on a 4MHz processor to achieve 75.6% accuracy
on 20 instructions. These encouraging results open the
possibility of utilizing our approach to build more efficient
and high-accuracy disassemblers to be used for anomaly
detection.

2. Background

Side-channel signals have been a known source of in-
formation leakage for decades [8] [9] [10]. They have been
exploited for recovering different types of data, including
screen images [10], secret keys [3], and audio [11]. Only
recently have side-channel analysis techniques been turned
to program disassembly, starting when Eisenbarth et al.
built a disassembler using power analysis [12]. Since
then, much progress has been made in this research area.
SCANDALee was the first successful em-based disas-
sembler [6]. Their method required multiple measurement
locations, and could only recover a portion of the instruc-
tion set on a slower (4MHz) processor. New techniques
were introduced for disassembly by Park et al., who were
able to recover nearly the entire instruction set, along
with registers, of a faster processor (ATMega 238P) [7],
although they only consider power side-channels, which
require a wired connection. Neural networks have also
been leveraged for disassembly, achieving similar levels of
accuracy only on power side channel [13]. Other works
have sought to ensure security without instruction-level



disassembly, such as Khan et al.’s EM-based intrusion de-
tection system [14]. Our methodology builds on these pre-
vious works to overcome the limitations of multiple-point
measurement and signal extraction to achieve instruction-
level disassembly using EM emissions.

3. Methodology Overview

Our process is composed of three steps: 1) Leakage
detection, 2) Signal extraction, and 3) Classification. Leak-
age detection is only done once, whereas signal extraction
and classification are performed every time.

Leakage Identification. Following the template-based
method used by previous work [7], we sample individual
instructions to build a template model before classifying
them in real code. Our approach begins by identifying
the component from which EM emanations are most
strongly correlated to executing instructions. This is done
empirically with a grid search across the device PCB
using a EMI probe located a few centimeters from the
board. At each point in the grid, we perform a simple
classification using a Random Forest algorithm that has
been adapted for use with time series implemented by
sktime [15]. To use this method we generate a template
built from samples of individual instructions with a no-
operation (NOP) immediately preceding and following it
to better identify the signal correlation with the executed
instructions. Before and after the target instruction, we
also implement a trigger operation for inducing a voltage
change (e.g., an instruction to flip a GPIO bit). This trigger
is used to separate the individual instructions for classi-
fication. This procedure gives a lower single-instructions
accuracy than our final classification, however, it shows
the relative information leakage that is used to identify one
or more optimal measurement locations corresponding to
the “leaky” electronic components (see Figure 2). After
this procedure the optimal measuring point is selected
and used for the rest of the process. Finally, because our
process uses the Fast Fourier Transform of the signal,
rather than the time series data, we identify the target
frequency bands using a spectrum analyzer.

Signal Extraction and Classification. The process to
build our template and to classify unknown signals follow
the same steps of signal extraction and classification.
This step consists in measuring the magnetic field around
the optimal point identified in the first step. Then we
automatically separate the instructions using the triggers,
and compute the FFT for each instruction. The magnitudes
of the transform at the frequencies identified in step one
are then used as features to train our model. While our
methodology can be adapted to any machine learning
algorithm, in our case study we found that the Random
Forest algorithm (not to be confused with the Time Series
Random Forest algorithm that we used for the grid search)
gave the highest single-instruction accuracy.

4. Proof-of-concept Disassembler

To test our methodology, we built a proof-of-concept
disassembler. We selected a subset of the AVR instruction
set by examining real-world code for a stack overflow
attack, then tested our disassembler on an ATMega328P.

Experimental setup. Our acquisition setup is shown
in Figure 1. We used a Tektronix H10 H-Field Probe con-
nected to a Tektronix MDO4024C oscilloscope to collect
traces from an Arduino UNO.

Figure 1. Acquisition setup made of a Tektronix H10 H-Field Probe
connected to a Tektronix MDO4024C oscilloscope.

Leakage Identification Phase. We began with a 80-
point grid search over the Arduino board and ran the Time
Series Random Forest classifier. We found that the highest
accuracy was near an operational amplifier connected to
the crystal oscillator, shown in Figure 2. This was the
point at which all other measurements were taken.

Frequency (Hz)

Figure 2. (Left) Recognition accuracy for the 80 subsection in which the
device under test was divided. The area near to the operational amplifier
connected to the crystal oscillator shows the highest accuracy (yellow).
(Right) Example of spectral profiling on a group of MULs and NOPs.

We used the Signal Hound SA44B spectrum analyzer
to study the frequency spectrum. Because the leakage
component was closer to the Arduino 16 MHz clock, we
examined frequencies within 1 MHz of the clock sub-
harmonics. Our analysis found that frequencies between
31.3-31.6 MHz showed the largest voltage difference for
our test instructions. The bands are shown in Figure 2.
Finally, we performed the hyperparameter optimization
for the tested classification algorithms as shown in Table
1. The random forest algorithm presented the highest
accuracy and was hence chosen as the optimal one for
the development of the disassembler.

TABLE 1. RANDOM SEARCH HYPERPARAMETER OPTIMIZATION

Algorithm Accuracy | Optimum Hyperparameters

Random Forest 85% Num. Estimators = 1000
Min. Interval = 2

Random Interval Spectra 56% Num. Estimators = 829
ACF lang = 400

K Nearest Neighbors 76% Num. Neighbors = 100
Support Vector Machines 82% Kernel = linear

Gamma = 0.1




4.1. Evaluation

4.1.1. Single Instructions Recognition. The results of
accuracy recognition for twelve selected instructions after
performing four fold cross validation in the developed
disassembler are summarized in Figure 3. The proposed
implementation yielded an 88.69% recognition accuracy.
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Figure 3. Confusion matrix of our EM side-channel based disassembler
four cross validated

4.1.2. Code Recognition. To test the capability of our
approach to recognize instructions on a potential real-
world case study, we consider the scenario of a real-world
medical device, SyringePump [16]. The pump is designed
to deliver medications to a patient at periodic intervals.
The system typically consists of a syringe, an actuator
(a stepper motor), and a control unit (Arduino UNO)
that takes commands from the serial port. We focus on
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Figure 4. Confusion matrix for identification of instructions in three cycle
instructions of the partially implemented Arduino SerialRead function

a specific section of the Arduino SerialRead function as
test case. This function is crucial for anomaly detectors to
infer the presence of ongoing buffer overflow attacks on
the internal buffer of the serial port.

A small driving program was made such that a com-
puter sends three arbitrary characters to the Arduino board
serial port and the SerialRead function stores those char-
acters in a buffer. Our acquisition setup was used to
collect traces for the relevant five instructions used by the
function. The driving program was run 500 times and 75%
of these traces were used to improve the single-instruction
model while the rest was used for testing. The recognition
accuracy obtained was 77.4% as shown in Figure 4.

5. Observations and Future Work

The proposed methodology allows single-instruction
classification with high accuracy. Moreover, by observing
the number of certain operations execution as well as the
timing deviation from the regular behavior, an anomaly
detector can leverage this findings to automatically deter-
mined if an attack was causing such deviation. Although,
the results of this test case scenario are preliminary and
more testing is required to evaluate the robustness of
our approach on different scenarios, they also show the
potential of our methodology to be used not only identify
anomalies but also provide forensic evidence for their cat-
egorization. Planned future work will address a more in-
depth evaluation on multiple case scenarios and different
processors to fully validate our methodology.
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