
Poster: The Beauty and the Beast (40 years of process algebra and cybersecurity)

1st Silvia De Francisci
SySMA Unit

IMT School for Advanced Studies
Lucca, Italy

silvia.defrancisci@imtlucca.it

2nd Gabriele Costa
SySMA Unit

IMT School for Advanced Studies
Lucca, Italy

gabriele.costa@imtlucca.it

3rd Rocco De Nicola
SySMA Unit

IMT School for Advanced Studies
Lucca, Italy

rocco.denicola@imtlucca.it

Abstract—Process algebras provide the mathematical foun-
dation for several formal verification techniques, and they
profoundly influenced many fields, from correct design to
testing. Process algebras were greatly influential also for
the security community. One of the main reasons for their
success is their compact, yet expressive and flexible syntax,
which allows to model the relevant aspects of computation
while abstracting away the secondary ones. Although most
authors acknowledge the importance of process algebras for
the security community, it is not trivial to estimate how they
shaped the past and present researches.

The goal of this work is to provide a comprehensive
outlook on some prominent works about process algebras
and security. These include both the application of process
algebras to security problems and process algebras inspired
by security-related aspects of computation. To achieve this,
we consider three fundamental fields of cybersecurity, i.e.,
secure development, threat modeling and vulnerability assess-
ment.

Index Terms—process algebra, cybersecurity, formal meth-
ods in security.

1. Introduction

Process Algebras (PA) are formal languages com-
monly used to model the behavior of a computational
agent. Roughly speaking, PA put most of the emphasis
on the control flow structure of the modeled agent, rather
than on its data flow. In most PA, computational steps also
emit observable actions. This allows to elegantly introduce
the role of an external observer, i.e., someone who aims
at understanding an agent’s behavior, but has no control
on its internal structure. Under reasonable assumptions,
an attacker is, in fact, an external observer. As a matter
of fact, an attacker is generally represented by its capa-
bilities and goals. In terms of capabilities, the possibility
to partially interact with the agent’s I/O mechanism is
a typical setting (e.g., think of information flow [19]).
In terms of goals, the attacker’s aim can be modeled as
a target state, e.g., denoting a failure of the agent, she
wants to reach. Formal models of both the attacker and
the system are the fundamental building blocks of most
automated, formal reasoning techniques. Not surprisingly,
a vast literature about the adoption of PA in cybersecurity
exists. As a result, determining the overall influence of PA
in cybersecurity and its sub-fields is difficult.

This poster proposes a systematization of the existing
PA and their applications to the cybersecurity fields. Our
contributions are the following.1

• We show significant PA from a genealogy stand-
point, as well as their unique characteristics.

• We discuss the impact of some PA and its ge-
nealogy in three application scenarios for cyberse-
curity classification: Secure Development, Threat
modeling, and Vulnerability assessment.

• We show the state-of-the-art of PA for secure
Development Life Cycle (DLC).

2. Genealogy of PA

The genesis of PA goes back to the 80s, when
a few authors independently proposed different calculi
for the specification of processes: Milner’s Calculus of
Communicating Systems (CCS) [16], Brookes, Hoare
and Roscoe’s Communicating Seqential Processes (CSP)
[8], and Bergstra’s Algebra of Communicating Processes
(ACP) [6], which inspired a considerable number of other
PA. Typically, derived PA introduce some new elements
w.r.t. their archetypes. These elements often aim to model
some specific aspects of computation. In order to better
highlight these extensions we label PA with icons de-
noting their peculiar features. Such features include the
ability to model security aspects (µ), timed computation
(�), stochastic behaviors (), quantum computing (C),
imperative statements (), cyber-physical systems A and
wireless networks . Arguably, the main reason behind
this diversification is the needing of considering specific
aspects of the computation of distributed agents. In this
landscape, security is no exception and several security-
related PA (µ) emerged. However, the main difference
w.r.t. other domain-specific PA is that security does not
refer to some peculiar aspect of the computation. In gen-
eral, security has to do with all the things that might go
wrong during the execution of a process. These behaviors
of interest can be modeled with specific, secure PA or even
with general purpose ones. As a consequence, PA used
in this field require particular attention for understanding
which security concerns they deal with, as explained
below.

1. Tables and figures highlighting our results are omitted in this
abstract and will be included in the poster above.

3. Secure PA

We now focus on PA that have been specifically
proposed for tackling security aspects. Security is a mul-
tifaceted issue. It is common knowledge that there is no
“silver bullet” for security and that several security tasks
must be carried out to improve the robustness of a system,
e.g., as in Security-by-Design [11].

Here we put forward a classification based on the
following three areas.

3 Secure development, i.e., PA supporting the secure
design, implementation and execution of a system.

 Threat modeling, i.e., PA used for modeling and
analyzing the behavior of an attacker and her
strategies.

 Vulnerability assessment, i.e., methods employing
PA for spotting out actual flaws in existing sys-
tems.

Needless to say, precisely measuring the impact of
a certain PA in these areas is extremely hard or even
impossible. However, a rough estimation can be obtained
by considering the scientific literature. In particular, we
propose the following scale that, to the best of our knowl-
edge, we can measure for a any given PA and security
area.

0 No literature exists applying PA in the area.
1
2 Some papers exist, but their authors belong to a

single clique.2
1 Some papers exist and their authors belong to two

or more cliques.

Below we discuss some observations we consider
more interesting.
Secure Development According to the considered liter-
ature, most PA-based proposals focus on secure design
and development. According to our analysis, for each
considered PA, 3 ¿ 0. However, when only considering
security PA (µ), the trend changes significantly.
Secure PA Secure PA are usually employed for modeling
threats and identifying vulnerabilities. Interestingly, SPA
with its extensions and especially applied π-calculus with
its extensions are used for the secure development of
systems.

4. PA for Secure Development

A cornerstone of Security-by-Design is that security
should be considered from the very early stages of the
design process. In this respect, thanks to their abstract
and compact syntax, PA have often been proposed as a
design formalism. Also, their formal semantics permits to
carry out verification procedures which are not natively
supported by other design languages, e.g., UML [7] and
BPMN [26]. Often, formal verification occurs via model
checking [10].

We reports the adoption of PA in DLC w.r.t. some
major application domains, specifying whether there exists
at least one implementation among PA-based tools.

We consider the following DLC macro-phases:

2. Cliques are computed by considering the co-authoring relation
induced by the literature considered in this poster.

• Planning, i.e., the initial conceptualization of the
system and its requirements.

• Design, i.e., the architectural modeling of the sys-
tem and its components.

• Implementation, i.e., the actual development of the
system.

• Testing, i.e., for validating the implementation
against the expected requirements.

• Maintenance, i.e., for monitoring, updating and
eventually disposing the system.

To the best of our knowledge, we conclude the following
use of PA related to DLC phases:
No usage for planning. No author proposes PA for the
earliest stage of the development process. Reasonably, this
happens because during this phase there is no information
about the modules that will constitute the system to be
implemented.
Design, implementation and testing. Many authors pro-
pose approaches employing PA during design, implemen-
tation and testing. This is somehow expected since PA
are particularly suitable for modeling a system and its
components. Moreover, their formal semantics provide the
foundation for refinement methods, useful at implemen-
tation time for driving the development process from its
initial specification. Also, at testing time, model checkers’
counterexamples can be converted to test cases.
Almost no maintenance. Not surprisingly, PA are
scarcely used for maintenance, with a few, interesting
exceptions mostly related to runtime enforcement. In par-
ticular, this topic is recurrent in the field of policy speci-
fication. The main reason is that PA provide a theoretical
background for policy enforcement. As a matter of fact,
some authors [1], [4], [5], [15], [14] found it convenient to
model policy monitors as agents that run in parallel with a
target system. In this context, action authorization amounts
to synchronous transitions between the two agents, i.e., the
monitor and its target.
Types of PA When only the Design phase is studied,
the PA employed are frequently new, generated for the
article’s purpose. While, when the Design, Implementa-
tion, and Testing phases (D-I-T) are considered together,
the PA used are typically those associated with a tool.
An ad hoc PA could better model the architecture under
consideration, but at the same time, it could be challenging
to verify the model’s correctness. As a result, sometimes
authors translate a PA or a programming language into
another PA to take advantage of a model checker. For
example, on [20], CHP is translated into LOTOS in order
to allow the application of CADP; Ferrara [13] also shows
a translation from BPEL into LOTOS for the same reason.

5. Related Work

Some authors revised the history of PA and the rele-
vant application domains. For instance, Baeten [3] surveys
PA in a general, he summarizes the history of CCS, CSP,
and ACP and he presents the developments of time and
stochastic features. More recently, Brookes and Roscoe [9]
approach from a historical point of view to CSP and
in particular to the FDR tool. Wang presents ATCP and
its variants in [25] and [24], considering cryptographic
properties, abstraction and introducing guards. In the first

article, he uses ATCP to analyze several protocols, while
in the second one, ATCP is used to model Map-Reduce,
Google File System, cloud resource management, Web
Service Composition, and QoS-aware Web Service orches-
tration. Aldini et al. [2] survey the application of PA to
software architecture, emphasizing on component-oriented
modeling. Beek et al. [21] compare formal methods used
on web service composition considering three features:
connectivity, correctness, and quality of services. In the
same domain Eddine [12] compares the different ap-
proaches, among which are PA, to design and implement
Web services focusing on choreography and orchestration.
Tuan Anh et al. [22] look into the issues surrounding
the security and privacy of the Internet of Mobile Things
utilizing PA, with a focus on the mobile PA π-calculus.
Wan et al. [23] survey composition mechanisms and then
models for cyber-physical systems, concluding that “CPS
development must be supported from the design phase
by process algebras to achieve strong results on correct-
ness,performance, cost and efficiency.” Related to protocol
specification and verification, Ryan et al. [18] model
and analyze protocols and properties through CSP, using
FDR and Casper tools. Ryan and Smyth [17], present
the applied pi-calculus, in which areas it was used, and
how to use it to model protocols and properties. Wideł et
al. [27] investigate the different generation and analysis
approaches for Attack Trees; among the formal methods
studied are PA, while among the analysis methods is the
tool UPPAAL and its variants.

References

[1] Kamel Adi, Lamia Hamza, and Liviu Pene. Automatic security
policy enforcement in computer systems. computers & security,
73:156–171, 2018.

[2] Alessandro Aldini, Marco Bernardo, and Flavio Corradini. A pro-
cess algebraic approach to software architecture design. Springer
Science & Business Media, 2010.

[3] Jos CM Baeten. A brief history of process algebra. Theoretical
Computer Science, 335(2-3):131–146, 2005.

[4] David Basin, Samuel J Burri, and Günter Karjoth. Dynamic
enforcement of abstract separation of duty constraints. ACM Trans-
actions on Information and System Security (TISSEC), 15(3):1–30,
2012.

[5] David Basin, Samuel J Burri, and Günter Karjoth. Obstruction-
free authorization enforcement: Aligning security and business
objectives. Journal of Computer Security, 22(5):661–698, 2014.

[6] Jan A Bergstra and Jan Willem Klop. Process algebra for syn-
chronous communication. Information and control, 60(1-3):109–
137, 1984.

[7] Grady Booch. The unified modeling language user guide. Pearson
Education India, 2005.

[8] Stephen D Brookes, Charles AR Hoare, and Andrew W Roscoe.
A theory of communicating sequential processes. Journal of the
ACM (JACM), 31(3):560–599, 1984.

[9] Stephen D Brookes and AW Roscoe. Csp: a practical process
algebra. In Theories of Programming: The Life and Works of Tony
Hoare, pages 187–222. 2021.

[10] Edmund M Clarke Jr, Orna Grumberg, Daniel Kroening, Doron
Peled, and Helmut Veith. Model checking. MIT press, 2018.

[11] Daniel Deogun, Dan Johnsson, and Daniel Sawano. Secure by
Design. Manning Publications, 2019.

[12] Meftah Mohammed Charaf Eddine et al. A comparative study of
formal approaches for web service oriented architecture. Netw.
Commun. Technol., 5(2):15–33, 2020.

[13] Andrea Ferrara. Web services: a process algebra approach. In Pro-
ceedings of the 2nd international conference on Service oriented
computing, pages 242–251, 2004.

[14] Mahjoub Langar, Mohamed Mejri, and Kamel Adi. Formal en-
forcement of security policies on concurrent systems. Journal of
Symbolic Computation, 46(9):997–1016, 2011.

[15] Fabio Martinelli, Ilaria Matteucci, and Charles Morisset. From
qualitative to quantitative enforcement of security policy. In Inter-
national Conference on Mathematical Methods, Models, and Ar-
chitectures for Computer Network Security, pages 22–35. Springer,
2012.

[16] Robin Milner et al. A calculus of communicating systems. Springer
Verlag, 1980.

[17] Mark D Ryan and Ben Smyth. Applied pi calculus. In Formal
Models and Techniques for Analyzing Security Protocols, pages
112–142. Ios Press, 2011.

[18] Peter Ryan, Steve A Schneider, Michael Goldsmith, Gavin Lowe,
and Bill Roscoe. The modelling and analysis of security protocols:
the CSP approach. Addison-Wesley Professional, 2001.

[19] Andrei Sabelfeld and Andrew C Myers. Language-based
information-flow security. IEEE Journal on selected areas in
communications, 21(1):5–19, 2003.

[20] Gwen Salaun, Wendelin Serwe, Yvain Thonnart, and Pascal Vivet.
Formal verification of chp specifications with cadp illustration on
an asynchronous network-on-chip. In 13th IEEE International
Symposium on Asynchronous Circuits and Systems (ASYNC’07),
pages 73–82. IEEE, 2007.

[21] Maurice H Ter Beek, Antonio Bucchiarone, and Stefania Gnesi.
Formal methods for service composition. Annals of Mathematics,
Computing & Teleinformatics, 1(5):1–10, 2007.

[22] Vu Tuan Anh, Pham Quoc Cuong, and Phan Cong Vinh. Context-
aware mobility based on π-calculus in internet of thing: A survey.
In Context-Aware Systems and Applications, and Nature of Com-
putation and Communication, pages 38–46. Springer, 2019.

[23] Kaiyu Wan, Danny Hughes, Ka Lok Man, and Tomas Krilavičius.
Composition challenges and approaches for cyber physical sys-
tems. In 2010 IEEE International Conference on Networked
Embedded Systems for Enterprise Applications, pages 1–7. IEEE,
2010.

[24] Yong Wang. Actors–a process algebra based approach. arXiv
preprint arXiv:2104.05438, 2021.

[25] Yong Wang. Secure process algebra. arXiv preprint
arXiv:2101.05140, 2021.

[26] Stephen A White. Introduction to bpmn. BPTrends, 2004.

[27] Wojciech Wideł, Maxime Audinot, Barbara Fila, and Sophie
Pinchinat. Beyond 2014: Formal methods for attack tree–based
security modeling. ACM Computing Surveys (CSUR), 52(4):1–36,
2019.

THE BEAUTY AND THE BEAST
40 YEARS OF PROCESS ALGEBRA AND CYBERSECURITY

Silvia De Francisci, Gabriele Costa, Rocco De Nicola
IMT School for Advanced Studies Lucca

THE BEAUTY AND THE BEAST
40 YEARS OF PROCESS ALGEBRA AND CYBERSECURITY

Silvia De Francisci, Gabriele Costa, Rocco De Nicola
IMT School for Advanced Studies Lucca

Abstract

Recently, process algebras were greatly influential in many fields, including cybersecurity. One of the main reasons for their success is their compact, yet expressive and flexible
syntax, which allows to model the relevant aspects of computation while abstracting away the secondary ones. Although most authors acknowledge the importance of process
algebras for the security community, it is not trivial to estimate how they are shaped the past and present researches. The goal of this work is to provide a comprehensive outlook
of the past and present researches about process algebras and security.

Genealogy of Process Algebras

Fig. 1: Process algebras family tree.

µ Security aspects � Timed computation C Quantum computing.

Stochastic behaviors Wireless networks A Cyber-physical systems

 Imperative statements → Derived from 99K Inspired by

Process Algebras for Security

3Secure development.

Threat modeling.

Vulnerability assessment.

0No literature exists.
1
2 Papers belong to a single clique.

1Papers belong to two or more cliques.

 3

LOTOS

 3

applied πµ

 3

SPAµ

 3

CCPS

 3

ACSR

 3

Timed CSP

 3

APTC

 3

χ

 3

PEPA

 3

CWS

Fig. 2: The PA employment for Secure Development (3), Threat Modelling (), and Vulnerability Assessment ().

Figure 2 schematically depicts some Process Algebras (PA) and their impact profile
according to the previous metrics. Each spider chart considers not only the PA men-
tioned but also its genealogy.

Secure Development

In the last decades, Security-by-Design [3] has received more and more attention as
the standard approach for developing secure systems. A cornerstone of Security-
by-Design is that security should be considered from the very early stages of the
design process. In this respect, thanks to their abstract and compact syntax, PA
have often been proposed as a design formalism. Also, their formal semantics enable
verification procedures not natively supported by other design languages, e.g., UML
[1] and BPMN [5]. Often, formal verification occurs via model checking [2].

Domain LC phases PA Tool # ref

π-c., Piccola c., Quality c.,c. for SoS 4
ACP, CSP, LOTOS, π-calculus ✓ 9Software
ACSR-VP 1

Hardware ACP, CCS, CHP ✓ 4
Management PEPA, ctm 3
systems ACP, CSP ✓ 3
Cloud π-c., applied πµ, COWS ✓ 3
computing Cloud c. 1

APTC, SBC-PA 2
CCS, CSP, LOTOS, π-c. ✓ 6Web services
applied πµ ✓ 1

Cyber-Physical
systems

χ, CCPS, IoT-c. 4
ACP, χ, IoT-LySa, Time-Space π-c. ✓ 4
TPL 1
dRi, Seal c., TCWS 3

Network
ACP, CSP, AWN, pACSR ✓ 4

Policy
specification

CSP, applied πµ, π-c., tSPAµ, ACCRP 8
ACP, CSP, ACPτ

ϵ -I, SPAµ, SAPiCµ ✓ 7
CSP ✓ 1
SPAµ 1
CSP, ACPϕ, SPAµ 5

Quantum CQP ✓ 2

Phases:
Planning Design Implementation Testing Maintenance

PA related to DLC

Usage: No Usage. During the planning phase there is no information about the mod-
ules that will constitute the system to be implemented.
Widely Used. PA are particularly suitable for designing a system and its components.
Their formal semantics lay the foundation for refinement methods, useful at implemen-
tation time. Also, at testing time, model checkers’ counterexamples can be converted
to test cases.
Almost No. The PA’ use in the maintenance phase is mostly related to runtime en-
forcement, particularly in policy specification. PA provide a theoretical background for
policy enforcement.
Types: When only the design phase is studied, the PA employed are frequently new,
generated for the purpose. When considering the design, implementation, and testing
phases all at once, the PA used are typically those associated with a tool. While
an ad hoc PA could better model the architecture under consideration, verifying the
model’s validity could be challenging. As a result, sometimes authors translate a PA
or a programming language into another PA to take advantage of a model checker.
For example, Ferrara [4] shows a translation from BPEL into LOTOS that allows the
use of CADP.

Secure PA

Secure PA are not commonly used for DLC. Since these PA are formulated to model
security threats, they put a strong emphasis on the attacker, i.e., Threat modeling and
Vulnerability assessment). However, in DLC the main focus is on avoiding design and
implementation flaws. Thus, the attacker role is often marginal.

References
[1] Grady Booch. The unified modeling language user guide. Pearson Education India, 2005.
[2] Edmund M Clarke Jr et al. Model checking. MIT press, 2018.
[3] Daniel Deogun, Dan Johnsson, and Daniel Sawano. Secure by Design. Manning Publications, 2019.
[4] Andrea Ferrara. “Web services: a process algebra approach”. In: Proceedings of the 2nd interna-
tional conference on Service oriented computing. 2004, pp. 242–251.

[5] Stephen A White. “Introduction to BPMN”. In: BPTrends (2004).

	Introduction
	Genealogy of PA
	Secure PA
	PA for Secure Development
	Related Work
	References

